1	Viability of Distributed Manufacturing of Bicycle Components
2	with 3-D Printing:
3	CEN Standardized Polylactic Acid Pedal Testing
45	Summary Paper
6	
7	Nagendra G. Tanikella
8	Department of Mechanical Engineering–Engineering Mechanics, Michigan Technological University,
9	Houghton, MI 49931, USA
10	ngtanike@mtu.edu
11	Benjamin Savonen
12	Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University,
13	Houghton, MI 49931, USA
14	blsavone@mtu.edu
15	John Gershenson
16	Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University,
17	Houghton, MI 49931, USA
18	jkgershe@mtu.edu
19	Joshua M. Pearce
20	Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI
21	49931, USA
22	pearce@mtu.edu
23	
24	Keywords: 3-D Printing, Bicycle, Distributed Manufacturing, Mechanical
25	Properties, PLA, RepRap
26	
27	1 TARGET AUDIENCE
28	Individuals, businesses and organisations working in less developed regions and isolated
29	communities. Humanitarian engineering educators looking for interesting case studies of open
30	source appropriate technology and the value of open source 3-D printing for sustainable
31	development
32	development
33	2 BACKGROUND
21	
34	Recent advancements in open-source self-replicating rapid prototypers (RepRap) have radically
35	reduced costs of 3-D printing. The cost of additive manufacturing enables distributed
36	manufacturing of open source appropriate technologies (OSAT) to assist in sustainable

- development. This potential has not yet been fully explored, particularly in regards to the
- 2 technical replacement ability of products from distributed manufacturing.

3

20

3 PURPOSE

- 5 In order to investigate the potential this study makes a careful investigation of the use of RepRap
- 6 3-D printers to fabricate widely used Black Mamba bicycle components in the developing
- 7 world.

8 5 METHOD

- 9 A CAD model of a bicycle pedal was created using parametric open source software (FreeCAD)
- to enable future customization. Then poly-lactic acid, a biodegradable and recyclable bioplastic
- was selected among the various commercial 3-D printable materials based on strength and cost.
- 12 The pedal was 3-D printed on a commercial RepRap and tested following the CEN (European
- 13 Committee for Standardization) standards for racing bicycles for 1) static strength, 2) impact,
- 14 and 3) dynamic durability.

15 **6 RESULTS**

- 16 The results show the pedals meet the CEN standards and can be used on bicycles. The 3-D
- printed pedals are significantly lighter than the stock pedals used on the Black Mamba, which
- 18 provides a performance enhancement while reducing the cost using raw PLA or recycled
- materials, which assists in reducing bicycle costs even for those living in extreme poverty.

7 IMPLICATIONS FOR TARGET AUDIENCES

- 21 There is significant profit potential even from manufacturing this single low-value product.
- Other bicycle parts could also be manufactured using 3-D printers for a return on investment
- 23 on the 3-D printer indicating that this model of distributed manufacturing of OSAT may be
- 24 technically and economically appropriate through much of the Global South. This provides
- 25 opportunities for small businesses to prosper as either bicycle shops using this method to
- 26 provide replacement parts or as stand-alone 3-D printing shops offering many varied
- 27 products. Humanitarian engineering educators have an opportunity to use this model of free
- and open source design to be digitally replicated in the developing world as a means to effect
- 29 positive change.